Canonical transformation and Hamilton – Jacobi theory
In several problems, we may need to change one set of position and momentum coordinates into another set of position and momentum coordinates. Suppose that \(q \) and \(p \) are the old position and momentum coordinates and \(Q_k \) and \(P_k \) are the new ones.

Let these coordinates be related by the following transformations:

\[
P_k = P_k(p_1, \ldots, p_n, q_1, \ldots, q_n, t)
\]

\[
Q_k = Q_k(p_1, \ldots, p_n, q_1, \ldots, q_n, t)
\]

Now if there exist a Hamiltonian \(H' \) in the new coordinates such that

\[
P_k^\cdot = -\frac{\partial H'}{\partial Q_k} \quad \text{and} \quad Q_k^\cdot = \frac{\partial H'}{\partial P_k}
\]

Where, \(H' = P_k Q_k^\cdot - L' \)

and \(L' \) substituted in the Hamilton's principle
\[\delta \int L' \, dt = 0 \]

Gives the correct equations of motion in terms of the new coordinate P_k and Q_k, then these transformation are known as canonical transformation.
CONDITION FOR CANONICAL TRANSFORMATION.

- Suppose \(F = F(q_k, Q_k) \) then obviously \(\frac{\partial F}{\partial t} = 0 \) and \(H = H' \)

\[
p_k = \frac{\partial F}{\partial q_k} \quad \text{and} \quad P_k = -\frac{\partial F}{\partial Q_k}
\]

Also

\[
dF = \sum \frac{\partial F}{\partial q_k} dq_k - \sum \frac{\partial F}{\partial Q} dQ_k
\]

\[
dF = \sum p_k dq_k - \sum P_k dQ_k
\]

The L.H.S of above equation is exact differential, hence for given transformation to be canonical, the R.H.S. i.e. \(\sum p_k dq_k - \sum P_k dQ_k \) must be an exact differential.
Those transformations in which the new set of coordinates (Q, P) differ from old set (q, p) by infinitesimals i.e. $Q = q + \delta q$ and $P = p + \delta p$ are called **infinitesimal contact transformations**.

\[F_2 = \sum q P + \varepsilon G(q, P) \]

\[p = \frac{\partial F_2}{\partial q_k} = P_k + \varepsilon \frac{\partial G}{\partial q_k}, \]

\[Q = \frac{\partial F_2}{\partial P_k} = q_k + \varepsilon \frac{\partial G}{\partial P_k}, \]

\[H' = H \]

\[Q_k - q_k = \delta q_k = \varepsilon \frac{\partial G}{\partial P_k}, \quad P_k - p_k = \delta p_k = -\varepsilon \frac{\partial G}{\partial q_k} \]

\[\delta q_k = \varepsilon \frac{\partial G}{\partial P_k} \quad \delta p_k = -\varepsilon \frac{\partial G}{\partial q_k} \]
In special case $dt = \varepsilon$, $G = H$,

$$\delta q_k = dt \frac{\partial H}{\partial P_k} = dt q \cdot_k = dq_k$$

$$\delta p_k = -dt \frac{\partial H}{\partial q_k} = dt p \cdot_k = dp_k$$

The motion of the system in a small time ‘dt’ can be described by an infinitesimal canonical transformation generated by the Hamiltonian H of the system.
POISSON’S BRACKETS

- If the functions F and G depend upon the position coordinate q, momentum coordinate p and time t, Poisson bracket of F and G defined as

$[F, G]_{q,p} = \sum \left(\frac{\partial F}{\partial q_k} \frac{\partial G}{\partial p_k} - \frac{\partial F}{\partial p_k} \frac{\partial G}{\partial q_k} \right)$

- For brevity we may drop subscripts q, p and write only $[F, G]$

- The total time derivative of function F can be written as

$$\frac{dF}{dt} = \frac{\partial F}{\partial t} + \sum \left[\left(\frac{\partial F}{\partial q_k} \right) q^* k + \frac{\partial F}{\partial p_k} \right] P^* k$$

$$\frac{dF}{dt} = \frac{\partial F}{\partial t} + \sum \left[\left(\frac{\partial F}{\partial q_k} \right) \frac{\partial H}{\partial p_k} + \frac{\partial F}{\partial p_k} \right] \frac{\partial H}{\partial q_k}$$
In Poisson's bracket form,
\[
\frac{dF}{dt} = \frac{\partial F}{\partial t} + [F, H]
\]

if \(\frac{dF}{dt} = 0 \), or \(\frac{\partial F}{\partial t} + [F, H] = 0 \)

now if \(F \) does not depend on time explicitly, \(\frac{\partial F}{\partial t} = 0 \) and then condition for \(F \) to be constant of motion is obtained to be

\[
[F, H] = 0
\]

In other words Poisson bracket with Hamiltonian vanishes is constant of motion
Thank You